Precessie: het grote wereldjaar

 

 

Precessie zoals we ze nu kennen

De aarde is te vergelijken met een tol die niet precies rechtop staat.

De aardequator maakt tegenwoordig een hoek van ongeveer 23,5 graden met de ecliptica. De zon oefent daardoor een kracht uit op het massaoverschot dat door de afplatting der aarde zich rondom de evenaar bevindt. Deze kracht zal proberen de aardas loodrecht op de ecliptica te stellen. Omdat de aarde om haar as draait, is het resultaat dat de aardas zelf een kegel rondom de pool van de ecliptica beschrijft. Dit uit zich in een verplaatsing van de noordpool aan de hemel, zij beschrijft een cirkel van 23,5 graden rondom de pool van de ecliptica.

Precessie zoals men ze in de Oudheid kende

In de Oudheid wist men bijlange niet dat de aarde rond was en dat ze in de ruimte rondtolde terwijl haar as steeds die naar een andere ster wees. En tóch wisten ze wat "precessie" was. Hoe kan dat ?

Toen de Griekse astronoom Hipparchus in de 2de eeuw v.C. een nieuwe sterrencatalogus wilde samenstellen, ontdekte hij dat de door hem gemeten posities niet meer overeenkwamen met de posities die overgeleverd waren. Vooral de datum van de dag-en-nachtevening schoof langzaam maar gestaag door. Hipparchus noemde dat proces 'precessie'.

 

sdfgsdfgsdf

sdfgsdfgsdg

 

Wat precessie wel is en wat ze niet is....

sdfgsdfg

ssdfgsdfgsdgf

 



 

Precessie zoals we ze nu kennen

De aarde is te vergelijken met een tol die niet precies rechtop staat.

De aardequator maakt tegenwoordig een hoek van ongeveer 23,5 graden met de ecliptica. Gedurende de geologische geschiedenis schommelt die inclinatie tussen 21,5 en 24,5 graden. De zon oefent daardoor een kracht uit op het massaoverschot dat door de afplatting der aarde zich rondom de evenaar bevindt. Deze kracht zal proberen de aardas loodrecht op de ecliptica te stellen. Omdat de aarde om haar as draait, is het resultaat dat de aardas zelf een kegel rondom de pool van de ecliptica beschrijft. Dit uit zich in een verplaatsing van de noordpool aan de hemel, zij beschrijft een cirkel van 23,5 graden rondom de pool van de ecliptica.

De periode van de precessie is 26.000 jaar. De precessieperiode zou volgens Milankovitch ook een rol spelen in de periodieke klimaatwisselingen van de aarde, hij vond echter een periodiciteit van 23.000 jaar, wat te maken heeft met de precessie van het perihelium, het verschijnsel dat de excentrische baan die de aarde om de zon beschrijft geleidelijk verdraait.

Precessie zoals men ze in de Oudheid kende

In de Oudheid wist men bijlange niet dat de aarde rond was en dat ze in de ruimte rondtolde terwijl haar as steeds die naar een andere ster wees. En tóch wisten ze wat "precessie" was. Hoe kan dat ?

Toen de Griekse astronoom Hipparchus in de 2de eeuw v.C. een nieuwe sterrencatalogus wilde samenstellen, ontdekte hij dat de door hem gemeten posities niet meer overeenkwamen met de posities die overgeleverd waren. Vooral de datum van de dag-en-nachtevening schoof langzaam maar gestaag door. Hipparchus noemde dat proces 'precessie'.

Het duurde echter nog tot Isaac Newton voordat daar een natuurkundige verklaring voor kwam: de aarde is een afgeplat hemellichaam (zie blz. 321 met een as die een helling van 66,5 graden met de ecliptica maakt. Zonen maan trekken aan de verdikking van de evenaar van de aarde om de aardas overeind te trekken. Die verzet zich daar echter tegen en maakt een beweging die lijkt op een draaiende tol.
Een omwenteling duurt echter 25.784 jaar en wordt soms ook wel prozaïsch 'het Grote Wereldjaar' genoemd. De precieze benaming luidt 'platonisch jaar'.

In onze tijden wijst het verlengde van de aardas in het noorden in de richting van de poolster, maar door de tolbeweging van de aardas verschuift de pool tussen de sterren. In het jaar 7500 zal bijvoorbeeld de ster Alderamin in Cepheus de rol van de poolster overnemen, in het jaar 9300 de heldere Deneb in Zwaan en in het jaar 14.000 Wega in Lier. Deze sterren komen niet zo dicht bij de echte hemelpool als de huidige poolster. Zo zijn er ook in het verleden andere poolsterren geweest: rond 3000 v.C. stond de ster Thuban in Draak heel dicht bij de noordelijke hemelpool.

Daardoor verschuift ook het hele astronomische coördinatenstelsel en de vastgelegde delen van de ruimte voor de afzonderlijke sterrenbeelden van de dierenriem. De zogenaamde dierenriemtekens verschuiven ten opzichte van de sterrenbeelden van de dierenriem.

Datzelfde gebeurt natuurlijk ook met de plaats van lente- en herfstpunt. Lag het lentepunt 2000 jaar geleden nog op de grens van Vissen en Ram, en werd het daarom Rampunt genoemd, nu ligt het in het westelijk deel van Vissen en zal het over 600 jaar Waterman bereiken. Dan zal volgens het geloof in de sterren de periode van vrede en muziek beginnen. Dat klinkt ook door in het lied 'The age of Aquarius' in de musical 'Hair'.

 

Sterrenbeelden: gezichtsbedrog? Wat wij als sterrenbeelden zien, is niet meer dan gevolg van ons aardse standpunt

ver bij elkaar vandaan - vaak zelfs vele lich~aren¬dat ze geen invloed op elkaar kunnen uitoefenen. Dat van de dierenriem. een eerste

 

 

 

Precessie van de aardas en de equinoxen

precessie etymologisch


wikipedia

Precessie van de aardas
Rotatie

Beweging van een tol of een planeet: R=Rotatie P=Precessie N=Nutatie
Beweging van een tol of een planeet: R=Rotatie P=Precessie N=Nutatie

De aarde is te vergelijken met een tol die niet precies rechtop staat.
De aardequator maakt tegenwoordig een hoek van ongeveer 23,5 graden met de ecliptica. Gedurende de geologische geschiedenis schommelt die inclinatie tussen 21,5 en 24,5 graden. De zon oefent daardoor een kracht uit op het massaoverschot dat door de afplatting der aarde zich rondom de evenaar bevindt. Deze kracht zal proberen de aardas loodrecht op de ecliptica te stellen. Omdat de aarde om haar as draait, is het resultaat dat de aardas zelf een kegel rondom de pool van de ecliptica beschrijft. Dit uit zich in een verplaatsing van de noordpool aan de hemel, zij beschrijft een cirkel van 23,5 graden rondom de pool van de ecliptica. De periode van de precessie is 26.000 jaar. De precessieperiode zou volgens Milankovitch ook een rol spelen in de periodieke klimaatwisselingen van de aarde, hij vond echter een periodiciteit van 23.000 jaar, wat te maken heeft met de precessie van het perihelium, het verschijnsel dat de excentrische baan die de aarde om de zon beschrijft geleidelijk verdraait.
precessiecirkel van de noordelijke hemelpool
precessiecirkel van de noordelijke hemelpool
precessiecirkel van de zuidelijke hemelpool
precessiecirkel van de zuidelijke hemelpool

Op het ogenblik is de noordelijke hemelpool minder dan één graad van de ster Polaris (alpha Ursae Minoris) verwijderd; deze ster noemen we daarom (noord)poolster. Omstreeks 2800 v.Chr. was Thuban (alpha Draconis) noordpoolster, toekomstige noordelijke poolsterren zijn gamma Cephei (4145) en Adleramin (alpha Cephei, 7530), over 25 770 jaar zal de hemelpool weer ongeveer met Polaris samenvallen.

De toekomstige zuidelijke poolsterren zullen zijn: omega Carinae (in 5770), upsilon Carinae (6850), Turais (iota Carinae, 8075) en delta Velorum (9240).

De verandering van de plaats van de hemelpolen brengt ook een verschuiving van het lentepunt en het herfstpunt met zich mee: elk jaar gaat het lentepunt de zon 50 boogseconden tegemoet. Daardoor veranderen ook de declinatie en rechte klimming van de sterren. Om de juiste plaats van een ster aan te kunnen geven, moet men weten voor welk tijdstip (Epoche) de opgegeven declinatie en rechte klimming (coördinaten) gelden en deze zo nodig met behulp van de precessie-tabellen corrigeren.

 

Een draaitol is een stuk speelgoed, dat door snel ronddraaien op een puntje kan blijven staan, en zo de zwaartekrachtswetten lijkt te schenden. Er zijn verschillende soorten draaitollen: priktollen, zweeftollen en bromtollen. Een bromtol is een vrij grote draaitol van metaal die draaiend wordt gehouden door het indrukken van een omhoog stekende pen. De zoemende of brommende toon wordt voortgebracht door een intern muzikaal mechanisme.

In de vijftiger jaren van de vorige eeuw was priktollen onder de jeugd erg populair. De houten priktol loopt naar de onderzijde conisch toe, wordt met een touwtje omwonden dat voor de draaiende beweging zorgt als de tol met een bepaalde beweging op de straat wordt geworpen. Het touwtje moet aan het uiteinde worden vastgehouden, waardoor de tol bij het wegwerpen zal afwikkelen en de draaiende beweging ontstaat. Door de gyroscopische werking richt het snel draaiende corpus zich op en zal de tol op de taats (een metalen punt aan de onderkant) blijven draaien. Bij steeds lagere draaisnelheid zal de vertikale stand steeds instabieler worden tot de tol uiteindelijk omvalt en geleidelijk tot stilstand komen
In die tijd waren er ook tollen die door er met een klein zweepje tegen aan te slaan draaiend werden gehouden.

[bewerk] Tolbewegingen
Beweging van een tol of een planeet
Beweging van een tol of een planeet

Een tol, maar ook een draaiende planeet in een zwaartekrachtveld maakt drie bewegingen:

* R=Rotatie
* P=Precessie
* N=Nutatie

 

 

 

Wat precessie wel is en wat ze niet is....

 

 

Gyroscopen

      

 

Gyroscoop

Een gyroscoop is een rotatiesymmetrische massa die om zijn as kan draaien. Populair gezegd is een gyroscoop een tol. Met een gyroscoop kan de wet van behoud van impulsmoment gedemonstreerd worden: het vliegwiel blijft draaien als het eenmaal in beweging is. Een snel draaiende gyroscoop zal zich daarbij verzetten tegen verandering van de stand van de draaias. De uitvinder van de gyroscoop Léon Foucault stelde in 1852 de naam samen uit de Griekse woorden "gyros" en "skopein" die respectievelijk "cirkel" en "zien" betekenen.

Voorbeelden van gyroscopen zijn de aarde, de wielen van een fiets of auto, een vliegwiel, een draaitol.

Vaak is een gyroscoop, net als een kompas op een schip, in een Cardanische ophanging gevat zodat hij in alle dimensies vrij kan draaien. In zo'n ophanging blijft de as één kant op wijzen, en daardoor is de gyroscoop onmisbaar geworden als richtinstrument in vliegtuigen, schepen, torpedo's en raketten. Zie bijvoorbeeld de V2 raket.

Wanneer een gyroscoop eenmaal in beweging is gebracht, zal door de wet van behoud van impulsmoment de draaias in dezelfde richting blijven. Léon Foucault bewees aan de hand van dit principe dat de aarde om haar as draait. Door de draaiing van de aarde lijkt het namelijk of de gyroscoop in een etmaal om zijn as draait. Omdat de gyroscoop ten opzichte van de ruimte stilstaat moet de aarde dus wel om haar as draaien
Beweging van een tol of een planeet: R=rotatie,P=precessie,N=Nutatie
Beweging van een tol of een planeet: R=rotatie,P=precessie,N=Nutatie

Wanneer de gyroscoop slechts op een punt wordt ondersteund zal precessie optreden. Het lijkt dan of de gyroscoop op een onmogelijke manier met de wetten van de zwaartekracht spot. Dit gedrag is het gevolg van het moment uitgeoefend door de zwaartekracht op het impulsmoment wat een resultante loodrecht op de zwaartekracht tot gevolg heeft.

Hoe groter het impulsmoment des te lager de precessiesnelheid. Zo duurt een precessieperiode van de aarde 25.800 jaar. Nutatie is de "bibberende" beweging van een tol of een planeet ten gevolge van de massaverdeling binnen het voorwerp.

[bewerk] Toepassing
Animatie van een gyroscoop in een cardanische ophanging
Animatie van een gyroscoop in een cardanische ophanging

In de scheep- en luchtvaart wordt de gyroscoop gebruikt als kompas. Gyroscopische kompassen zijn nauwkeuriger dan kompassen die gebruikmaken van het aardmagnetisch veld die storing ondervinden van de aanwezigheid van ijzer. Gyroscopische kompassen hebben hier geen last van. Een gyrokompas moet echter wel regelmatig worden geijkt. Dit gebeurt meestal aan de hand van de sterren, het zogenaamde nemen van een azimut, of het peilen van een lichtenlijn.

De Gravity Probe B-missie van de NASA voert een experiment uit met behulp van uiterst nauwkeurige gyroscopen om de relativiteitstheorie te bevestigen.

In de film- en televisiewereld worden gyroscopen gebruikt om een camera te stabiliseren. De gyroscoop merkt bewegingen van de camera op, en de sensor maakt vervolgens een tegengestelde beweging. Gyroscopen worden bijvoorbeeld gebruikt voor opnamen met een steadicam, en vanuit een helikopter, om de schokbewegingen van de wind en de rotorbladen te corrigeren. Bij gebruik met een helikopter kunnen wel 5 gyroscopen gebruikt worden.

 

Kosmische rampen in het zonnestelsel en de oorzaak van precessie

(Bron: Piramides in de Kosmos)

5.      De schuinstand van de rotatieas van de aarde en de (mogelijke) ontstaansgeschiedenis van de maan

Volgens de logica die we gevolgd hebben om de structuur van het zonnestelsel te verklaren, moet de rotatieas van de aarde oorspronkelijk loodrecht gestaan hebben op de ecliptica.
Momenteel wijkt de rotatieas 23,5° af van die loodrechte stand. De gebeurtenis waardoor de as uit zijn lood werd geslagen over een dergelijk grote hoek moet ingrijpend geweest zijn. Wanneer een object botst met de roterende aarde, dan kan de rotatieas uit positie worden geslagen. Het effect van de botsing hangt af van:
•          de hoeveelheid rotatie (impulsmoment J) van de aarde;
•          de energie van de botsing;
•          de invalshoek van de inslag.
FiguurVll1.3 toont de invloed van de geometrie op het resultaat van de botsing. Botsingen en ejecties van materiaal worden in deze figuur in één adem vermeld. De inslag van een object met een wel bepaalde massa, snelheid, inslagplaats en invalshoek heeft immers precies hetzelfde effect op de baan en de rotatie van de aarde als het wegslingeren van dezelfde hoeveelheid materie onder dezelfde omstandigheden (snelheid, plaats en hoek).
Een botsing die verticaal op het aardoppervlak inslaat, zal nooit in staat zijn om de oriëntatie van de rotatieas te wijzigen. Een dergelijke botsing kan natuurlijk wel de aarde uit haar baan slaan en zal in elk geval een inslagkrater nalaten. In deze paragraaf zijn we echter niet geïnteresseerd in botsingen die de baan van de aarde om de zon zouden hebben verstoord maar wel in botsingen die in staat waren om de rotatieas van de aarde te kantelen ... over ongeveer 23,5°.
Aan de noordpool is een botsing die rakend inslaat aan het aardoppervlak het beste in staat om de oriëntatie van de as te wijzigen. Aan de evenaar zorgen evenwijdige inslagen voor twee effecten gaande van een maximale kanteling van de as zonder de aarde sneller te doen draaien of af te remmen (de botsing loodrecht op het equatoriale vlak) tot het maximaal sneller doen draaien of afremmen van de aardrotatie zonder de as om te duwen (de botsing in het equatoriale vlak).
Botsingen die de rotatie van een planeet versnellen, kunnen immers ook net zo goed de bestaande rotatie afremmen, wanneer hun invalsrichting tegengesteld is aan die van de rotatie. Dit is waarschijnlijk gebeurd met Venus die heel traag roteert (zie tabel VII 1.2) en deze ultratrage rotatie wel zal te wijten hebben aan een botsing met een groot object uit het zonnestelsel. Die botsing moet dan wel hebben plaatsgevonden in het equatoriale vlak van Venus en tegengesteld geweest zijn aan de zin van de bestaande rotatie.

FiguurVlI1.3 - Botsingen met asteroïden of kometen (pijlen naar het aardoppervlak toe) en ejecties van materiaal (pijlen van het aardoppervlak af). Pijlen van de bundel P die het aardoppervlak scheren, zijn aan de rotatiepool het beste in staat om de rotatieas te kantelen. Aan de evenaar zijn dit de rakende pijlen E1 Rakende pijlen zoals E2, versnellen of vertragen de rotatie wel maar kantelen de rotatieas niet.

Tabel VIII.4 toont het resultaat van eenvoudige berekeningen die de botsing van een object uit het zonnestelsel met de aarde karakteriseren. Als impactsnelheid werd de ontsnappingssnelheid genomen.
Als de aarde met de zon zou botsen, zal de rotatieas van de zon niet veranderen. De aarde zal zeker worden verwoest en haar rotatieas zal kunnen kantelen over alle mogelijke hoeken tussen 0° en 90°.
Uit tabel VIII.4 merken we dat als Mars met de aarde zou botsen, de energieoverdracht 1015 megaton zou bedragen: zo'n tien miljoen maal meer energie dan de 'Yucatan-asteroïde'. De rotatieas van de aarde zou hierbij maximaal over 83° kunnen kantelen. Als de inslag zuiver radiaal naar het centrum van de aarde toe gericht zou zijn geweest, zou de rotatieas onaangeroerd blijven. De aarde zelf zou nochtans volledig worden verwoest. De aardmaan zou 1014 megaton in de aarde kunnen pompen, bij botsing de aarde volledig verwoesten, maar de rotatieas maximaal laten kantelen over 42°. Asteroïden en kometen kunnen wel enorme verwoestingen aanbrengen maar de rotatieas van de aarde laten kantelen, kunnen ze niet.

Tabel VIII.4 - Enkele kenmerken van botsingen met of ejecties uit de aarde.
De tweede kolom geeft de inhoud aan kinetische energie van een object dat op de aarde stort, of uit de aarde geëjecteerd wordt, met de ontsnappingssnelheid van 11,2 km/s. De derde kolom geeft de maximale waarde van de hoek waarvoor de rotatieas van de aarde wordt gekanteld als gevolg van deze botsing. De minimale hoek is altijd nul, omdat als de invalshoek precies verticaal is, de rotatieas onaangeroerd blijft.

Object

Log. Energie (megaton)

Max. hoekkanteling

Zon

21,5

90,0

Mars

15,0

82,9

Aardmaan

14,0

41,9

Marsmaan Phobos

7,2

0,00

Jupitermaan Ganymedes

14,4

61,1

Grote asteroïde Ceres

12,1

0,65

Kleinere asteroïde Chiron

9,7

0,00

Komeet Encke

4,4

0,00

Komeet Halley

7,6

0,00

Uit tabel VIII.4 blijkt dat botsingen met een energie tienmaal hoger dan de 'Yucatan-inslag' de rotatieas van de aarde met rust laten. Een dergelijke gebeurtenis zou de aarde wél ongeveer verwoesten.
Onze maan blijkt een goede kandidaat te zijn om de kanteling van de aard rotatieas te hebben veroorzaakt. Een hoek tussen nul en 42° kan best 23,5° zijn. Dit kan natuurlijk niet gebeurd zijn door een botsing met de aarde. De maan is nooit met de aarde gebotst. Bovendien zou een dergelijke botsing een miljoen maal meer energie hebben gehad dan de 'Yucatan¬inslag' en de aarde zeker hebben vernietigd.
Zoals reeds hierboven geargumenteerd, geeft tabel VIII.4 niet alleen het resultaat van een botsing van een object met de aarde maar ook van de omgekeerde gebeurtenis waarbij het object zich losmaakt van de aarde. Om die reden werd in de tabel gerekend met de ontsnappingssnelheid.
Ooit geloofden de mensen in de 'dochtertheorie' voor de vorming van de maan. De aarde kan echter nooit voldoende snel hebben rondgetold om de maan te kunnen wegslingeren. Daarenboven zou een dergelijke ejectie gebeurd zijn in het equatoriale vlak van de rotatie. We zagen echter in figuur VIII.3 dat een aldus georiënteerde ejectie nooit de oriëntatie van de rotatieas kan wijzigen.
Het is waarschijnlijk dat een botsing van de jonge, nog gesmolten, aarde met een object van Marsgrootte in de eerste dagen van het bestaan van het zonnestelsel plaatsgevonden heeft. Een frontale botsing zou natuurlijk catastrofaal geweest zijn. Een scherende inslag kan de maanmassa uit de aarde hebben gekatapulteerd met een snelheid hoger dan de ontsnappingssnelheid. Op deze manier kan de aarde aan haar maan geraakt zijn, en ook aan de kanteling van haar rotatieas. Tabel VIII.4 toont dat een object met Marsgrootte ruimschoots volstond om aan die kanteling een hoek van 23,5° mee te geven.
Foto VIII.3 toont computersimulaties waarbij de scherende inslag van een object van Marsgrootte delen van de gesmolten aarde wegslingert in de. richting van de maanbaan. De lichte rotsdeeltjes bereiken de maanbaan, terwijl de zwaardere metaaldeeltjes naar de aarde terugvallen. In die maanbaan smelten de rotsdeeltjes samen tot één maan. Deze theorie (ook wel 'dochtervangst' theorie genoemd) over het ontstaan van onze maan is veel waarschijnlijker dan de hierboven vermelde 'dochtertheorie' en dan de extreem onwaarschijnlijke 'vangsttheorie' waarbij de aarde in staat zou zijn geweest om de maan bij een toevallige nadering met de aarde te vangen. De 'dochtervangst' -theorie heeft bovendien het voordeel dat ze de kanteling van de rotatieas ten opzichte van de ecliptica (met 23,5°) kan verklaren en een plausibele uitleg kan geven voor het verschil in samenstelling tussen aarde en maan. De maan is rotsachtig en heeft een gemiddelde dichtheid van 3.300 kg/m³; terwijl de aarde veel metalen bevat en hierdoor de grotere gemiddelde dichtheid van 5.520 kg/m³ bereikt.

6. De precessie van de rotatieas van de aarde

De schuinstand van de rotatieas van de aarde heeft ingrijpende gevolgen voor de baan van de aarde om de zon. De meest opvallende consequentie is de precessie van de rotatieas van de aarde.
Beschouw een tol die snel roteert om haar eigen as. Als de rotatieas verticaal staat, zal ze verticaal blijven. Als de rotatieas echter - zoals in de figuur VIII.4 - een hoek maakt met de verticale richting, dan zal die as langzaam roteren om de verticale as: met andere woorden een precessiebeweging beschrijven. Hierbij beschrijft de rotatieas een kegelmantel met de hoek tussen die rotatieas en de verticale richting als halve tophoek. De tophoek blijft dus bij deze precessiebeweging constant. Als de hoek tussen de rotatieas en de verticale richting 20° bedraagt dan zal de rotatieas in de loop van de tijd een kegelmantel bestrijken met een tophoek van 40°.

FiguurVIII.4 - De precessie van de rotatieas van de tol, waarbij die as niet loodrecht staat op het baanvlak

Dit is precies wat er gebeurt met de rotatieas van de aarde. Die maakt een hoek van 23,5° met het baanvlak van de aarde om de zon. Hierdoor zal de rotatieas een precessie uitvoeren (zie figuur VIII.5) met een tophoek van 47°. De periode van deze precessiebeweging bedraagt 26.000 jaar (eigenlijk 25.770). De precessie wordt veroorzaakt door de zwaartekracht die de zon en de maan extra sterk uitoefenen op de equatoriale uitstulping van de aarde die naar de zon toegekeerd is, terwijl deze kracht extra zwak is aan de andere kant. Dit overschot van kracht op de 'voorkant' samen met tekort aan kracht op de 'achterkant' van de aarde veroorzaken de precessie, die we de lunisolaire precessie noemen. Dit mechanisme regelt ook de getijden op aarde. Twee maal per dag eb en twee maal per dag vloed. Getijden die inderdaad extra sterk zijn bij springtij: als aarde, maan en zon op één lijn staan en de maan en de zon optimaal solidair de aarde oprekken. De getijdekrachten beïnvloeden de structuur en de evolutie van sterren en sterrenstelsels zeer ingrijpend.

FiguurVIII.5 -: Als gevolg van de precessie van de aardrotatieas, zal de huidige Poolster (alfa Ursae Minoris) over 13.000 jaar vervangen zijn door Wega. Thuban kon 5.000 jaar geleden als Poolster dienst doen

Als we veronderstellen dat de sterren aan het firmament vaste plaatsen bezetten (wat slechts bij benadering het geval is), dan toont figuur VIII.5 dat de huidige poolster (alfa Ursae Minoris) niet permanent in de richting zal blijven staan van de rotatieas van de aarde. Vijfduizend jaar geleden was Thuban (alfa Draconis) een geschikte ster om het noorden aan te wijzen. Dertienduizend jaar geleden en over dertienduizend jaar, zal Wega (alfa Lyrae) de ster zijn die dienst kan doen als Poolster.
Tegenwoordig staat voor een waarnemer in Brussel de Poolster permanent 51° boven de horizon. Binnen dertienduizend jaar zal diezelfde ster als gevolg van de lunisolaire precessie een grote cirkel beschrijven aan het firmament. De ster alfa Ursae Minoris zal dan een paar graden boven de horizon staan aan de noordermeridiaan en geklommen zijn tot voorbij het zenit op de zuidermeridiaan.
Als gevolg van de lunisolaire precessie veranderen alle sterren hun 'vaste' coördinaten ten opzichte van de aardse waarnemer. Als de waarnemer bijvoorbeeld zijn blik richt op de zuidermeridiaan, ziet hij met een periode van 26.000 jaar elke ster één keer klimmen en één keer dalen over een totaal spectrum van 47°. Bovendien zullen de sterren zich onder een andere waarnemingshoek vertonen. Bijvoorbeeld, de verbindingslijn van drie sterren die eerst loodrecht op de zuidermeridiaan staat zal er 13.000 jaar later schuin op staan.
Deze effecten worden getoond in figuur II.3 van 'hoofdstuk II' voor de sterren van het sterrenbeeld Orion, zoals waargenomen door bewoners van de streek van de piramides van Gizeh tussen 10.500 en 3.000 v.C.
De lunisolaire precessie is niet de enige wijziging die de baan van de aarde om de zon ondergaat. Andere belangrijke wijzigingen van de aardbaan zetten we hieronder even op een rijtje.
1. De grote planeten Jupiter en Saturnus trekken ook aan de aardbaan. Dit noemt men planetaire precessie. Deze precessie dwingt de halve lange as van de aarde om langzaam te roteren in de ecliptica. Als gevolg hiervan is de precessie van de rotatieas ten opzichte van de zon niet gelijk aan 26.000 jaar, maar veeleer van 21.700 jaar. Als gevolg van de precessie van de rotatieas van de aarde veranderen de sterren hun posities ten opzichte van de aarde met een periode van 26.000 jaar. De twee snijpunten van equator (vlak loodrecht op de rotatieas) en ecliptica noemt men respectievelijk 'lentepunt' en 'herfstpunt'. Deze punten van de equinox roteren dus in de ecliptica met een periode van 21.700 jaar.
2. De elliptische baan van de aarde bezit momenteel een excentriciteit van 0,0167. De baan van de aarde is dus bijna cirkelvormig. De aarde ontvangt nu in het aphelium 7 % minder straling van de zon dan in het perihelium. Ook de excentriciteit van de aardbaan verandert periodiek: van perfect cirkelvormig (met 0 % verschil in ontvangen straling tussen perihelium en aphelium) tot een maximale excentriciteit waarbij de aarde in apheliumstand 30 % minder straling ontvangt dan in periheliumstand. De periode van deze wijziging bedraagt 105.000 jaar.
3. De schuinstand van de rotatieas van de aarde bedraagt momenteel 23,5°. Dit getal is in dit hoofdstuk al tot vervelens toe herhaald, en toch is dit getal ook niet constant. De schuinstand van de. rotatieas van de aarde varieert tussen 21,8° en 24,4° met een periode van 41.000 jaar.
Voortbouwend op ideeën van Alphonse Joseph Adhémar (1842) en James Croll (1867), formuleerde Milutan Milankovitch in 1920 een theorie om de periodiciteit van de ijstijden te verklaren. Hierbij blijkt dat de excentriciteit van de baan (periode = 105.000 jaar), de schuinstand van de rotatieas (periode = 41.000 jaar) en de precessie van het lentepunt (periode = 21.700 jaar) periodiek optimaal kunnen samenwerken om een grote ijstijd te veroorzaken. Op deze manier worden deze ijstijden telkens gescheiden door een tijdspanne van 100.000 jaar en mag de volgende belangrijke ijstijd over 60.000 jaar worden verwacht.

7.      Het leven op aarde is een gelukkige samenloop van omstandigheden

In de loop van dit hoofdstuk kwamen een aantal toevalligheden aan het licht die van cruciaal belang zijn voor het ontstaan en de instandhouding van het leven op aarde. We zetten er hier een paar op een rijtje.
1. Paragraaf 2 vermeldt dat de kans om tot de aarde te behoren en niet tot een andere - onleefbare - plaats in het zonnestelsel nét iets minder toevallig is dan het winnen van de grote pot bij de Lotto (3/1 000.000).
2. Tabel VIII.2 toont dat het magneetveld van de aarde wellicht niet erg sterk is, maar toch opvallend in vergelijking met het magneetveld van de andere kleine planeten. Dit magneetveld behoedt de aarde en haar bewoners tegen de kankerverwekkende geladen deeltjes die door de zonnewind worden uitgeblazen. Die deeltjes ketsen af op dit magnetisch schild.
3. Tabel VIII.2 toont dat de ontsnappingssnelheid van de aarde 11,2 km/s bedraagt. Op Mars is die snelheid veel kleiner. Hierdoor heeft de aarde haar atmosfeer wel kunnen vasthouden en Mars een stuk minder. Zonder die atmosfeer (bestaande uit 78 % stikstof en 21 % zuurstof) zouden we op aarde natuurlijk niet kunnen ademen. Bovendien zouden meteorieten ongehinderd met de aarde botsen en grote schade aanrichten. Het aardoppervlak zou in dat geval bezaaid zijn met inslagkraters zoals de objecten van figuur VIII. 1 die een zeer dunne of helemaal geen atmosfeer bezitten.
4. De aardatmosfeer bevat verder voldoende CO2 (koolstofdioxide) om het gepaste broeikaseffect te verkrijgen. Bij zijn ontstaan had Mars een atmosfeer zoals de aarde, maar de koolstofdioxide verdween eruit. Op Mars werd de koolstofdioxide uit de atmosfeer gezogen door het water en afgezet op gesteentes. Hierdoor is er op Mars geen broeikaseffect meer en zijn de temperaturen er onhoudbaar geworden. Het water is er permanent bevroren. Op aarde wrijven de gesteentes over elkaar als gevolg van de bestaande platentektoniek. Hierdoor wordt de koolstofdioxide die door gesteentes opgeslorpt was, aan de atmosfeer teruggegeven. Zonder broeikaseffect zou de temperatuur op aarde 35 graden lager zijn. De aarde zou een dode planeet gebleven zijn. Anderzijds zou te veel koolstofdioxide de temperatuur op aarde gevaarlijk doen stijgen. Laten we daar dus maar voorzichtig mee zijn.
5. In paragraaf 3 zagen we dat de zon een lange geschiedenis heeft. Een ster als de zon behoudt gedurende tien miljard jaar (ongeveer) dezelfde temperatuur, straal- en lichtkracht. Dat de eigenschappen van de zon zeer constant zijn gedurende zo'n lange tijd, heeft het leven in staat gesteld om zich op aarde te nestelen. Een veel massievere ster als moederster zou voor de aarde veel te snel geëvolueerd zijn om die ontwikkeling toe te laten. Een veel minder massieve ster zou hiervoor te weinig lichtkracht hebben gehad.
6. In die omstandigheden leert tabel VII1.1 ons dat de aarde precies op de juiste afstand staat om een hoeveelheid straling van de zon over te nemen waardoor de temperatuur noch te koud, noch te warm is. Op aarde bestaat het water zowel in de vorm van ijs, van water als van damp. Dit is nergens anders in het zonnestelsel het geval.
7. In paragraaf 1 zagen we dat 2 % van het materiaal van het zonnestelsel bestaat uit de elementen zwaarder dan waterstof en helium die nodig zijn voor het leven. Die 2 % zwaar materiaal zou er nooit zijn, mocht de zon een 'eerste-generatiester' zijn. Op de plaats waar de zon zich nu in de melkweg bevindt, bevonden zich vroeger kortlevende zware sterren. Die zijn alle als supernova ontploft en hebben hun zwaar materiaal aan de zon doorgegeven.
8. In paragraaf 4 leerden we dat de aarde nog altijd een schiettent is voor asteroïden en kometen. Jupiter blijft echter de grote attractor voor deze botsingen en fungeert dus ook als een schild om de aarde (alsnog) te behoeden voor de zwaarste botsingen.
9. De maan spiraalt langzaam weg van de aarde. Mocht ze langzaam naar de aarde toe spiralen, dan was de fatale botsing op de duur onvermijdelijk.

Conclusies

De aarde is maar een nietig onderdeel van het zonnestelsel. Het leven op aarde is te danken aan een onwaarschijnlijke samenloop van gunstige omstandigheden. De aarde staat bloot aan botsingen met andere objecten van het zonnestelsel. Deze kosmische rampen kunnen de aarde uit haar baan kegelen en zelfs vernietigen. Toch is dit nog niet gebeurd in de lange geschiedenis van het bestaan van de aarde. De kanteling van de rotatieas van de aarde is nochtans wél het gevolg van een kosmische ramp met beperkte gevolgen. De laatste kosmische ramp die een groot gedeelte van het leven op aarde vernietigde vond 65 miljoen jaar geleden plaats. Tussen 10 500 en 3 000 v.C. waren er (meer dan waarschijnlijk) geen botsingen met asteroïden en kometen die op aarde grote schade aanrichtten.

 

Einde pagina, terug naar boven

Bronvermelding:

Wikipedia: precessie en Wikipedia: gyroscoop

Bernard Mackowiak: "Astronomie, 100 vragen en antwoorden over ons zonnestelsel, de aarde en het heelal"